Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner.

نویسندگان

  • Yingmei Liu
  • Wang Min
چکیده

It has been shown that thioredoxin (Trx) in a reduced form binds to and inhibits apoptosis signal-regulating kinase 1 (ASK1). Apoptotic stimuli such as tumor necrosis factor (TNF) and reactive oxygen species (ROS) activate ASK1 in part by oxidizing Trx (forming intramolecular disulfide between C32 and C35) to release Trx from ASK1. In the present study, we examined if Trx affects ASK1 protein stability and whether the redox activity of Trx is critical in regulating ASK1 activity. First, we showed that overexpression of the wild-type Trx (Trx-WT) in endothelial cells induced ASK1 ubiquitination and degradation. Trx-induced ASK1 ubiquitination/degradation could be blocked by ASK1 activators TNF and TRAF2. We then tested the single-mutation of Trx at the catalytic site C32 or C35 (Trx-C32S or Trx-C35S) and the double-mutation (Trx-CS). The results showed that the single mutants (but not Trx-CS) retained the binding activity for ASK1 and the ability to induce ASK1 ubiquitination/degradation. Unlike Trx-WT, Trx-C32S and Trx-C35S mutants constitutively bind to ASK1 even in the presence of hydrogen peroxide in vitro and TNF in vivo. Finally, we showed that the single mutants (not Trx-WT) significantly (n=4 and P<0.05) inhibited ASK1-induced JNK activation, caspase 3 activity, and apoptosis in TNF/ROS-resistant manner. Our data suggest that association of Trx with ASK1 through a single Cysteine (C32 or C35) is necessary and sufficient for Trx activity in inducing ASK1 ubiquitination/degradation leading to inhibition of ASK1-induced apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yingmei Liu and Wang Min Apoptosis in a Redox Activity-Independent Manner Thioredoxin Promotes ASK1 Ubiquitination and Degradation to Inhibit ASK1-Mediated

It has been shown that thioredoxin (Trx) in a reduced form binds to and inhibits apoptosis signal-regulating kinase 1 (ASK1). Apoptotic stimuli such as tumor necrosis factor (TNF) and reactive oxygen species (ROS) activate ASK1 in part by oxidizing Trx (forming intramolecular disulfide between C32 and C35) to release Trx from ASK1. In the present study, we examined if Trx affects ASK1 protein s...

متن کامل

Disulfide bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H2O2-induced JNK activation and apoptosis

Apoptosis signal regulated kinase-1 (Ask1) lies upstream of a major redox-sensitive pathway leading to the activation of Jun N-terminal kinase (JNK) and the induction of apoptosis. We found that cell exposure to H2O2 caused the rapid oxidation of Ask1 leading to its multimerization through the formation of interchain disulfide bonds. Oxidized Ask1 was fully reduced within minutes after inductio...

متن کامل

Thioredoxin-2 inhibits mitochondria-located ASK1-mediated apoptosis in a JNK-independent manner.

Apoptosis signal-regulating kinase 1 (ASK1) mediates cytokines and oxidative stress (ROS)-induced apoptosis in a mitochondria-dependent pathway. However, the underlying mechanism has not been defined. In this study, we show that ASK1 is localized in both cytoplasm and mitochondria of endothelial cells (ECs) where it binds to cytosolic (Trx1) and mitochondrial thioredoxin (Trx2), respectively. C...

متن کامل

Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1.

Apoptosis signal-regulating kinase (ASK) 1 was recently identified as a mitogen-activated protein (MAP) kinase kinase kinase which activates the c-Jun N-terminal kinase (JNK) and p38 MAP kinase pathways and is required for tumor necrosis factor (TNF)-alpha-induced apoptosis; however, the mechanism regulating ASK1 activity is unknown. Through genetic screening for ASK1-binding proteins, thioredo...

متن کامل

Serine-threonine kinase receptor-associated protein inhibits apoptosis signal-regulating kinase 1 function through direct interaction.

Serine-threonine kinase receptor-associated protein (STRAP) interacts with transforming growth factor beta (TGF-beta) receptors and inhibits TGF-beta signaling. Here, we identify STRAP as an interacting partner of ASK1 (apoptosis signal-regulating kinase 1). The association between ASK1 and STRAP is mediated through the C-terminal domain of ASK1 and the fourth and sixth WD40 repeats of STRAP. U...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 90 12  شماره 

صفحات  -

تاریخ انتشار 2002